Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds

نویسندگان

  • Dimitris Bertsimas
  • Frans J. C. T. de Ruiter
چکیده

In this paper we derive and exploit duality in general two-stage adaptive linear optimization models. The equivalent dualized formulation we derive is again a two-stage adaptive linear optimization model. Therefore, all existing solution approaches for two-stage adaptive models can be used to solve or approximate the dual formulation. The new dualized model differs from the primal formulation in its dimension and uses a different description of the uncertainty set. We show that the optimal primal affine policy can be directly obtained from the optimal affine policy in the dual formulation. We provide empirical evidence that the dualized model in the context of two-stage lot-sizing on a network and two-stage facility location problems solves an order of magnitude faster than the primal formulation with affine policies. We also provide an explanation and associated empirical evidence that offer insight on which characteristics of the dualized formulation make computations faster. Furthermore, the affine policy of the dual formulations can be used to provide stronger lower bounds on the optimality of affine policies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimation and adaptive computation for elliptic problems with randomly perturbed data

In this paper we study two linear model problems where stochastic perturbation is present in the data. We present a method for computing stochastic quantities of linear functionals of solutions to these partial differential equations that is based on solving a single dual problem and then, for each realization in the sample, computing an inner product between this dual solution and the data. We...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

Exponential membership function and duality gaps for I-fuzzy linear programming problems

Fuzziness is ever presented in real life decision making problems. In this paper, we adapt the pessimistic approach tostudy a pair of linear primal-dual problem under intuitionistic fuzzy (I-fuzzy) environment and prove certain dualityresults. We generate the duality results using exponential membership and non-membership functions to represent thedecision maker’s satisfaction and dissatisfacti...

متن کامل

Mesh adaptive computation of upper and lower bounds in limit analysis

An efficient procedure to compute strict upper and lower bounds for the exact collapse multiplier in limit analysis is presented, with a formulation that explicitly considers the exact convex yield condition. The approach consists of two main steps. First, the continuous problem, under the form of the static principle of limit analysis, is discretized twice (one per bound) using particularly ch...

متن کامل

Faster Optimization through Adaptive Importance Sampling

The current state of the art stochastic optimization algorithms (SGD, SVRG, SCD, SDCA, etc.) are based on sampling one active datapoint uniformly at random in each iteration. Changing these probabilities to better reflect the importance of each datapoint is a natural and powerful idea. In this thesis we analyze Stochastic Coordinate Descent methods with fixed non-uniform and adaptive sampling. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2016